16 research outputs found

    Characterizing the universal rigidity of generic frameworks

    Full text link
    A framework is a graph and a map from its vertices to E^d (for some d). A framework is universally rigid if any framework in any dimension with the same graph and edge lengths is a Euclidean image of it. We show that a generic universally rigid framework has a positive semi-definite stress matrix of maximal rank. Connelly showed that the existence of such a positive semi-definite stress matrix is sufficient for universal rigidity, so this provides a characterization of universal rigidity for generic frameworks. We also extend our argument to give a new result on the genericity of strict complementarity in semidefinite programming.Comment: 18 pages, v2: updates throughout; v3: published versio

    Distance constraints solved geometrically

    Get PDF
    International Symposium on Advances in Robot Kinematics (ARK), 2004, Sestri Levante (Italia)Most geometric constraint problems can be reduced to give coordinates to a set of points from a subset of their pairwise distances. By exploiting this fact, this paper presents an algorithm that solves distance constraint systems by iteratively reducing and expanding the dimension of the problem. In general, these projection/backprojection iterations permit tightening the ranges for the possible solutions but, if at a given point no progress is made, the algorithm bisects the search space and proceeds recursively for both subproblems. This branch-and-prune strategy is shown to converge to all solutions.Peer Reviewe
    corecore